58 research outputs found

    Using all-sky differential photometry to investigate how nocturnal clouds darken the night sky in rural areas

    Full text link
    Artificial light at night has affected most of the natural nocturnal landscapes worldwide and the subsequent light pollution has diverse effects on flora, fauna and human well-being. To evaluate the environmental impacts of light pollution, it is crucial to understand both the natural and artificial components of light at night under all weather conditions. The night sky brightness for clear skies is relatively well understood and a reference point for a lower limit is defined. However, no such reference point exists for cloudy skies. While some studies have examined the brightening of the night sky by clouds in urban areas, the published data on the (natural) darkening by clouds is very sparse. Knowledge of reference points for the illumination of natural nocturnal environments however, is essential for experimental design and ecological modeling to assess the impacts of light pollution. Here we use differential all-sky photometry with a commercial digital camera to investigate how clouds darken sky brightness at two rural sites. The spatially resolved data enables us to identify and study the nearly unpolluted parts of the sky and to set an upper limit on ground illumination for overcast nights at sites without light pollution.Comment: 17 pages, 6 figure

    Measuring Light Pollution with Fisheye Lens Imagery from A Moving Boat, A Proof of Concept

    Full text link
    Near all-sky imaging photometry was performed from a boat on the Gulf of Aqaba to measure the night sky brightness in a coastal environment. The boat was not anchored, and therefore drifted and rocked. The camera was mounted on a tripod without any inertia/motion stabilization. A commercial digital single lens reflex (DSLR) camera and fisheye lens were used with ISO setting of 6400, with the exposure time varied between 0.5 s and 5 s. We find that despite movement of the vessel the measurements produce quantitatively comparable results apart from saturation effects. We discuss the potential and limitations of this method for mapping light pollution in marine and freshwater systems. This work represents the proof of concept that all-sky photometry with a commercial DSLR camera is a viable tool to determine light pollution in an ecological context from a moving boat.Comment: 9 pages, 6 figures, accepted at International Journal of Sustainable Lightin

    Evaluating the summer night sky brightness at a research field site on Lake Stechlin in northeastern Germany

    Get PDF
    We report on luminance measurements of the summer night sky at a field site on a freshwater lake in northeastern Germany (Lake Stechlin) to evaluate the amount of artificial skyglow from nearby and distant towns in the context of a planned study on light pollution. The site is located about 70 km north of Berlin in a rural area possibly belonging to one of the darkest regions in Germany. Continuous monitoring of the zenith sky luminance between June and September 2015 was conducted utilizing a Sky Quality Meter. With this device, typical values for clear nights in the range of 21.5-21.7 magSQM/_{SQM}/arcsec2^2 were measured, which is on the order of the natural sky brightness during starry nights. On overcast nights, values down to 22.84 magSQM/_{SQM}/arcsec2^2 were obtained, which is about one third as bright as on clear nights. The luminance measured on clear nights as well as the darkening with the presence of clouds indicate that there is very little influence of artificial skyglow on the zenith sky brightness at this location. Furthermore, fish-eye lens sky imaging luminance photometry was performed with a digital single-lens reflex camera on a clear night in the absence of moonlight. The photographs unravel several distant towns as possible sources of light pollution on the horizon. However, the low level of artificial skyglow makes the field site at Lake Stechlin an excellent location to study the effects of skyglow on a lake ecosystem in a controlled fashion.Comment: 20 pages, 8 figures, Journal of Quantitative Spectroscopy and Radiative Transfer 201

    Imaging and mapping the impact of clouds on skyglow with all-sky photometry

    Get PDF
    Artificial skyglow is constantly growing on a global scale, with potential ecological consequences ranging up to affecting biodiversity. To understand these consequences, worldwide mapping of skyglow for all weather conditions is urgently required. In particular, the amplification of skyglow by clouds needs to be studied, as clouds can extend the reach of skyglow into remote areas not affected by light pollution on clear nights. Here we use commercial digital single lens reflex cameras with fisheye lenses for all-sky photometry. We track the reach of skyglow from a peri-urban into a remote area on a clear and a partly cloudy night by performing transects from the Spanish town of Balaguer towards Montsec Astronomical Park. From one single all-sky image, we extract zenith luminance, horizontal and scalar illuminance. While zenith luminance reaches near-natural levels at 5km distance from the town on the clear night, similar levels are only reached at 27km on the partly cloudy night. Our results show the dramatic increase of the reach of skyglow even for moderate cloud coverage at this site. The powerful and easy-to-use method promises to be widely applicable for studies of ecological light pollution on a global scale also by non-specialists in photometry.Comment: 13 pages, 7 figure

    Imaging of trapped ions with a microfabricated optic for quantum information processing

    Get PDF
    Trapped ions are a leading system for realizing quantum information processing (QIP). Most of the technologies required for implementing large-scale trapped-ion QIP have been demonstrated, with one key exception: a massively parallel ion-photon interconnect. Arrays of microfabricated phase Fresnel lenses (PFL) are a promising interconnect solution that is readily integrated with ion trap arrays for large-scale QIP. Here we show the first imaging of trapped ions with a microfabricated in-vacuum PFL, demonstrating performance suitable for scalable QIP. A single ion fluorescence collection efficiency of 4.2±1.5% was observed. The depth of focus for the imaging system was 19.4±2.4μm and the field of view was 140±20μm. Our approach also provides an integrated solution for high-efficiency optical coupling in neutral atom and solid-state QIP architectures

    Stripe-array diode-laser in an off-axis external cavity: Theory and experiment

    Get PDF
    Stripe-array diode lasers naturally operate in an anti-phase supermode. This produces a sharp double lobe far field at angles \$\pm \alpha\$ depending on the period of the array. In this paper a 40 emitter gain guided stripe-array laterally coupled by off-axis filtered feedback is investigated experimentally and numerically. We predict theoretically and confirm experimentally that at doubled feedback angle \$2 \alpha\$ a stable higher order supermode exists with twice the number of emitters per array period. The theoretical model is based on time domain traveling wave equations for optical fields coupled to the carrier density equation taking into account diffusion of carriers. Feedback from the external reflector is modeled using Fresnel integration

    Assessing long-term effects of artificial light at night on insects: what is missing and how to get there

    Get PDF
    Widespread and significant declines of insect population abundances and biomass are currently one of the most pressing issues in entomology, ecology and conservation biology. It has been suggested that artificial light at night is one major driver behind this trend. Recent advances in the gathering and analysis of long-term data sets of insect population and biomass trends, however, have mostly focused on the effects of climate change and agricultural intensification. We posit here that adequate assessment of artificial night at light that would be required to evaluate its role as a driver of insect declines is far from trivial. Currently its implementation into entomological monitoring programmes and long-running ecological experiments is hampered by several challenges that arise due to (i) its relatively late appearance as a biodiversity threat on the research agenda and (ii) the interdisciplinary nature of the research field where biologists, physicists and engineers still need to develop a set of standardised assessment methods that are both biologically meaningful and easy to implement. As more studies that address these challenges are urgently needed, this article aims to provide a short overview of the few existing studies that have attempted to investigate longer-term effects of artificial light at night on insect populations. To improve the quality and relevance of studies addressing artificial light at night and its effect on insects, we present a set of best practise recommendations where this field needs to be heading in the coming years and how to achieve it
    • …
    corecore